Hemoglobin Interactions with αB Crystallin: A Direct Test of Sensitivity to Protein Instability

نویسندگان

  • Tyler J. W. Clark
  • Scott A. Houck
  • John I. Clark
چکیده

As a small stress response protein, human αB crystallin, detects protein destabilization that can alter structure and function to cause self assembly of fibrils or aggregates in diseases of aging. The sensitivity of αB crystallin to protein instability was evaluated using wild-type hemoglobin (HbA) and hemoglobin S (HbS), the glutamate-6-valine mutant that forms elongated, filamentous aggregates in sickling red blood cells. The progressive thermal unfolding and aggregation of HbA and HbS in solution at 37°C, 50°C and 55°C was measured as increased light scattering. UV circular dichroism (UVCD) was used to evaluate conformational changes in HbA and HbS with time at the selected temperatures. The changes in interactions between αB crystallin and HbA or HbS with temperature were analyzed using differential centrifugation and SDS PAGE at 37°C, 50°C and 55°C. After only 5 minutes at the selected temperatures, differences in the aggregation or conformation of HbA and HbS were not observed, but αB crystallin bound approximately 6% and 25% more HbS than HbA at 37°C, and 50°C respectively. The results confirmed (a) the remarkable sensitivity of αB crystallin to structural instabilities at the very earliest stages of thermal unfolding and (b) an ability to distinguish the self assembling mutant form of HbS from the wild type HbA in solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Sites in αB-Crystallin Modulate Its Interactions with Desmin Filaments Assembled In Vitro

The β3- and β8-strands and C-terminal residues 155-165 of αB-crystallin were identified by pin arrays as interaction sites for various client proteins including the intermediate filament protein desmin. Here we present data using 5 well-characterised αB-crystallin protein constructs with substituted β3- and β8-strands and with the C-terminal residues 155-165 deleted to demonstrate the importanc...

متن کامل

R120G αB-crystallin promotes the unfolding of reduced α-lactalbumin and is inherently unstable

α-Crystallin is the principal lens protein which, in addition to its structural role, also acts as a molecular chaperone, to prevent aggregation and precipitation of other lens proteins. One of its two subunits, αBcrystallin, is also expressed in many non-lenticular tissues, and a natural missense mutation, R120G, has been associated with cataract and desminrelated myopathy, a disorder of skele...

متن کامل

Binding determinants of the small heat shock protein, αB-crystallin: recognition of the 'IxI' motif.

Small heat shock proteins (sHSPs) play a central role in protein homeostasis under conditions of stress by binding partly unfolded, aggregate-prone proteins and keeping them soluble. Like many sHSPs, the widely expressed human sHSP, αB-crystallin ('αB'), forms large polydisperse multimeric assemblies. Molecular interactions involved in both sHSP function and oligomer formation remain to be deli...

متن کامل

ΑB-crystallin in clear cell renal cell carcinoma: tumor progression and prognostic significance.

OBJECTIVES AlphaB-crystallin (αB-crystallin), a small heat shock protein, has been reported to be involved in the growth, antiapoptosis, migration, and chemoresistance of human malignancies. MATERIALS AND METHODS αB-crystallin expression in normal renal and clear cell renal cell carcinoma (ccRCC) tissues was examined with two-dimensional (2D) gel electrophoresis assays. Immunohistochemistry w...

متن کامل

Correction: In Vivo Substrates of the Lens Molecular Chaperones αA-Crystallin and αB-Crystallin

αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract forma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012